
6 spring/summer 2016

T ime and Code in the
Poetr y of John Cayley
and the Poets of
R oz d z ie lcz o ś ć C hleba

Mariusz Pisarski

Appeals for an expanded poetics, heard in the past decade in discussions of contemporary
textuality, always promising a renaissance for poetics and its preoccupations, are quick to
find a sympathetic response. Who among literary scholars, a privileged crew in the 20th cen-
tury due to the position of language and textual problems at the centre of cultural studies,
would not wish to hold onto that strong hand in the 21st, after the performative1 and digital
“turns”?2 Should we not ask, however, which poetics we are expanding? For Barrett Watten,
poetics is a writing genre;3 in the Polish and European contexts, it is treated as a discipline.
Between these two poles there is a middle way, whose adepts find poetics in each method
and every possible feature of language adaptable for rhetorical or aesthetic purposes. In this
article, I will argue that we should also consider the act of programming a literary work for
aesthetic, cognitive and meta-reflexive purposes to be a form of poetics.

1 E. Domańska, “Zwrot performatywny we współczesnej humanistyce” (The Performative Turn in the
Contemporary Humanities), Teksty Drugie 2007, no. 5, 48-61.

2 M. Meryl, “F5: Odświeżanie filologii” (F5: The Renewal of Philology), Teksty Drugie 2014, no. 2, 9-20.
3 B. Watten, “Poetics in the Expanded Field: Textual, Visual, Digital . . .,” in: New Media Poetics. Contexts,

Technotexts and Theories, ed. A. Morris, T. Swiss, Cambridge: MIT Press, 2006.

Poetics in Action.

7theories | Mariusz Pisarski, Poetics in Action

From the perspective of the theory and practice of electronic literature, disciplines which
developed as cultural consequences of the computer and internet revolution,4 the first point
of view – of poetics as a kind of writing treating as its object the methods and means of ar-
tistic production – does not require expansion or amplification, since it is doing well. Almost
every utterance in the work “born digital” is marked by self-reflexivity. A revealing allegory
for that self-reflexivity is the popular message “Hello World!” at the beginning of lessons
in programming languages. That joyous greeting by the layman entering the path of IT ini-
tiation is – at the same time – an invitation into the double ontology of digital text being
text and code simultaneously, being both written and programmed. Traces of self-reflexivity
and metatextuality featured in the classic hypertext novels of Michael Joyce, Shelley Jack-
son, and Stuart Moulthrop. When e-literature began to break free of the closed publishing
framework and conquer the Internet, that tendency only grew stronger, as proven by Mark
Amerika’s Grammaron and Hypertextual Consciousness (1999) or Talan Memmot’s Lexia from
Perplexia (2002).

But while poetics as a genre is thriving in the field of e-literature and claiming its own his-
torical analysis (which would examine, for example, the reasons for generic transitions over
recent decades from hypertextual prose through e-poetry to game applications with anima-
tion and film elements), poetics as a discipline, if it is seriously going to encompass literary
practice in the programming medium in its interests, must not only expand its horizon to
include those developments, but also deepen its methods to include a “heremeneutics of in-
teractivity” and a “hermeneutics of code.”5

It seems that the latter hermeneutics, that is, the close reading, analysis and interpretation
of the code substratum of “techsts,” has been most neglected. Despite the fact that 10 years
have passed since the publication of the book New Media Poetics,6 in which important literary
scholars and comparativists, as well as practitioners and theorists of e-literature, built the foun-
dations for a poetics of hybrid, expanded forms, that expansion, potentially deeply transforma-
tive, for poetics itself remains a zone into which critics prefer not to venture, no doubt for fear
of overstepping their interdisciplinary credentials.7 So the voices of scholars with credentials in
poetry, literary scholarship and computer programming are highly valued in this context. “Pro-
grammatology” (John Cayley), “expressive processing” (Nick Montfort, Noah Wardrip-Fruin),
“digital text archaeology” (Matthew Kirschenbaum), “critical code studies” (Mark Marino) and

4 On electronic literature as an artistic and theoretical field, see, among others, K. N. Hayles, “Electronic
Literature: What Is It?” at https://eliterature.org/pad/elp.html; Scott Rettberg, “Communitizng Electronic
Literature,” http://www.digitalhumanities.org/dhq/vol/3/2/000046/000046.html (last accessed
30.03.2016).

5 R. Simanowski, Interfictions: von Schreiben im Netz, Frankfurt: Suhrkamp, 2002, 121, 139.
6 In Poland, there has also been considerable discussion over the last decade of the need to expand poetics to

include media and digital literary forms; contributions to the discussion include the work of Ewa Szczęsna,
Seweryna Wysłouch, Urszula Pawlicka, Piotr Marecki, Monika Górska-Olesińska, Piotr Kubiński, and the
author of the present work.

7 In 2011, when the publisher Ha!art issued Michael Joyce’s hypertext fiction work “Afternoon, a story” (I
produced the Polish version) a respected Polish weekly sought to review it. When we sent the CD-rom to their
culture department, an editor called us to request a PDF copy, so that he could read the novel in a manner
better-suited to reviewing, i.e., traditional, non-fragmented, and non-interactive.

8 spring/summer 2016

“platform studies” (Nick Montfort, Ian Bogost)8 are areas in the theory and practice of litera-
ture of new media that go beyond metaphors of codec bandwith. In light of thorough analyses
of the influence of code on the semantics, rhetoric and poetics of digital forms, the loud “code
works” of net.artu, often merely non-interactive mixtures of code and natural language, at
the visual and verbal level bespeak a superficial fascination with secondary languages which
is nothing new in culture. In 2016, digital poetry created according to that tired recipe has no
justification for its existence; at the same time, the potential for creative manipulation of the
text through code remains unexplored.

I therefore propose to return to basic, previously existing distinctions, but base them on
newer examples, including some Polish ones. The proposal seems all the more apt since the
poetic and programming practice of the creator of my typology has effectively strengthened
it in successive years. John Cayley, a Canadian poet, lecturer at Brown University, pioneer
of electronic poetry, and the author of mobile, programmable poems, was published in New
Media Poetics alongside Warren Batten9 with an appeal for a more complete understanding
of the layer of code in digital art, expanding then-prevalent concepts of “codework” promul-
gated by Rita Raley and the understanding of the role of code in digital literature put forward
by N. Katherine Hayles together with the category of the “flickering signifier.”10 In the first
instance, reflection on code was focused, in Cayley’s view, mainly on the surface of the text,
influenced by code in its capacity of visual-linguistic artefact. In the second instance, the
“flickering” of the “techst” relates to internal processes connected with the physical origin of
the message sent, fundamentally unimportant for the reader. In neither situation does the
role of code influence either the processes of meaning creation on the work’s “stage” or in its
event field, or make any particular contribution to digital poetics as such.

The Anatomy of Code
Cybertexts and ergodic works, those whose content and trajectory are variable, have in-
troduced the event field into literary communication.11 Located in between the sender and
receiver, it makes a work into a kind of dramatic game, a performance, the result of which is
dependent on several factors and is determined by the tentative guidelines the author puts
into the program that sets its course. The result certainly does not lie in the reader’s hands.
He or she can, of course, modify certain aspects of the text on its interface or paratextual
surface, but the modus operandi of contemporary digital poetic forms privileges the details

8 These disciplines were outlined in the following works: J. Cayley, “The code is not the text (unless it is the text),”
Electronic Book Review 2002, online: http://www.electronicbookreview.com/thread/electropoetics/literal; N.
Wardrip-Fruin, Expressive processing. Digital fictions, Computer games, and software studies, Cambridge: MIT Press
2010; M. G. Kirschenbaum, Mechanisms new media and the forensic imagination, Cambridge: MIT Press 2008; M.
Marino, “Critical Code Studies,” Electronic Book Review 2006, online: http://www.electronicbookreview.com/
thread/electropoetics/codology/, N. Montfort, I. Bogost, Racing the Beam The Atari Video Computer System,
Cambridge: MIT Press 2009.

9 J. Cayley, “Time Code Language: New Media Poetics and Programmed Signification,” in: New Media Poetics,
307–334.

10 See R. Raley, “Interferences: [Net.Writing] and the practice of codework,” Electronic Book Review 2002,
online. http://www.electronicbookreview.com/v3/servlet/ebr?command =view_essay&essay_id=rayleyele; N.
Katherine Hayles, “Print is flat, code is deep: the importance of media-specific analysis,” Poetics Today 2004,
volume 25, 67-90.

11 E. Aarseth, “Nonlinearity and literary theory,” in: The New Media Reader, eds. N. Montfort and N. Wardrip-
Fruin, Cambridge, Massachusetts: MIT Press 2002, 762–780.

9

packed into the scenario over readerly freedom of choice. In writing as performance of writ-
ing, which is how John Cayley understands his work, there is no place for the latter option.
The reader as an active participant can initiate codework, prompt its direction or enter the
material to be worked on, but the freedom to seriously transform the material does not
feature here. This is especially true in the case of works whose result cannot be predicted
even by the author, since they involve the use of either randomly generated algorithms or
externally-based scripts.12

1. Code as a Language
The first kind of “code writing” that Cayley discusses is code as seen through the eyes of
professionals. In this view, it appears as a special kind of language that can be looked at,
read and interpreted. In the case of Leszek Onak’s poem “bletka z balustrady” (joint from the
balustrade, 2014) or Piotr Puldzian Płucienniczak’s generator “Booms” (2016), the language
is the script language javascript, understood and interpreted by internet browsers displaying
websites that connect with java scripts. The syntax of that language is subject to strict rules,
but its usage varies with each use and is submitted to evaluation by other programmers. In
“Booms,” the text’s mechanics are controlled by four javascript files. One of them, booms.js,
when opened in the editing program,, proves to be written in 28 lines. Between lines 10 and
12 the function “podstawRzeczy” (basiThing) is defined.

function podstawRzeczy(n) {

 $(“.v1”).html(rzeczy[n][0]);

 $(“.v3”).html(rzeczy[n][1]);

[“Rzecz” meaning “thing” and “podstaw” being the root or genitive plural of “podstawa,”
meaning “base, fundament.”] As the built-in error message tells us, in line 11 the dollar sign
is used without prior definition. A programmer reviewing code or tasked with testing it must
draw certain practical conclusions from such a message, but to a literary scholar, the code
read on the page like this does not have any particular value. The reception of code as lan-
guage does not tell us anything about the poetics or rhetoric of a work, though it can confirm
observations made at the surface level of the text. For example, the name of the function
“podstawRzeczy” is a programming proof of the work’s variability.

2. Code as Language Modulator (Language Operates, Not Code)
If, in the first version, we read code under the surface of the text as the material out of which
it is constructed, in the second part, code as language is drawn outward to enter into seman-
tic relationships with natural language. Cayley adds that code in this case ceases to function
(as code) in order to become part of a linguistic message. In the example of Leszek Onak and
Łukasz Podgórny’s poem “<h1>Depresja</h1>” (<h1>Depression</h1>) from the book wgraa
(instaall, 2012):

12 I will illustrate the five-degree stratification of layers of code presented and the ways it has been understood
by critics using works by Leszek Onak, Piotr Puldzian Płucienniczak, and Łukasz Podgórny from the Kraków
poetry group Rozdzielczość Chleba. I will then examine poetic programs from John Cayley and Daniel C. Howe’s
series Readers’ Project.

theories | Mariusz Pisarski, Poetics in Action

10 spring/summer 2016

<h1>depresja</h1>

<?php

include(“personal.conf”);

$tresc_zapytania = “SELECT gęstość FROM spacja

 WHERE ciasteczka = ‘zablokowane’”;

$zapytanie = mysql_query($tresc_zapytania);

while ($row = mysql_fetch_assoc($zapytanie)) {

$unique = $row[‘gęstość’];

$wynik = str_replace(““,”
”, $unique);

echo $wynik;

?>

Illustration no. 1. Poem <h1>depresja</h1> by Leszek Onak and Łukasz Podgórny

The syntax of the php language, used to build dynamic web pages in their interaction with
servers and databases, is broken up in this poem and mixed with Polish so as to build seman-
tic tension and encourage the reader to look for new contexts for both orders. The strategy
applied by Podgórny and Onak treats code as an idiom, as a foreign linguistic element, which,
when it encrusts a poem, is joined to the poetic object, putting into question the previous un-
derstanding of what poeticism means and expanding the horizons of verbal art to encompass
new, unexplored territory. This is the most normal thing in the world, according to Cayley.
And in fact, what is the difference between including in a poem elements of local dialect or
folklore, as the Romantics did, or elements of new media (film, radio), as the Futurists did,
and enhancing poetry with elements of code? The problem is that code in this case does not
function as code, since when woven into the fabric of language it has lost its operational,
performative power. A computer will not read it, and its event field is static and constricted
to the visual/linguistic surface. That is why Cayley looks disapprovingly on the code works of
Australian net.art writer Mez Breeze,13 despite the recognition she has obtained from critics
of e-literature.

13 Mez Breeze’s work, especially her “mezagnegele” technique of mixing code language and natural language,
was praised in superlative terms by critics including K. Hayles, Florian Krammer, R. Raley. See e.g. N. K.
Hayles, “Deeper Into the Machine: Learning to Speak Digital,” Computers and Composition 2002, no. 19, 4,
371-386.

11

From a point of view that takes into account the contexts of the subcodes cited, Cayley’s view
can be challenged. Code is not merely an ornament or element in the visual play of concrete
poetry, but, like folklore in the case of the Romantics, which brought with it clear prosodic
and rhythmic preferences, constituting a distinguishing feature of Romantic poetics, or like
film montage and photographic collage, which provided direct inspiration for the techniques
of the pre-war avant-garde, a linguistic subcode relating to and used for reading a computer
program has rhetorical and stylistic potential. Part of Onak and Podgórny’s most important
poem “inherits” its length from the length of a single php declaration and fits directly into
that declaration’s framework, which is delimited by the opening and closing marks of a pro-
gramming function („<?php ?>). If a book were based on a similar principle, we could talk
about active participation by the conventions of code in the creation of a single text, inas-
much as it here becomes the matrix of poetic convention.

3. Code as Readable and Performative Text
(Code Functions, Not Language)
The title of Onak and Podgórny’s poem “<h1>depresja</h1>” is simultaneously the name of
an html language—a functioning one! If we enter it into an html file, our web browser will
display the word “depresja” (depression) in large bold letters. The manoeuvre is not only ac-
tivated by code, but is itself a particle (the simplest possible one) of active code. This kind of
presence of code in a literary work is placed by Cayley into a third category, less popular than
the preceding one and represented by, for example, perl poetry – i.e., poetry written using
short commands in the perl language, which, since English is the constructive material of pro-
gramming subcodes, produces poems that can be performed on the computer as well as read.
The latter activity, however, confronts the reader with some transgressions against grammar,
sentence structure, and segment coherence.

4. Code as Coding
Reading code with an emphasis on its transformative potential in the sphere of the digital
text’s material substratum belongs to the fourth category and is represented in Katherine N.
Hayles’s understanding of code, among others. Code here performs the fundamental work
of transforming signals from one system of signification into another, beginning with the
physical sequence of breaks in the passage of current and ending with the codification of the
alphabet of the language of communication in such a way that appropriate diacritical marks
are displayed on the screen. Code thus grasped points us toward the ontology of the digital
utterance, but simultaneously, like code as language, is situated in a register not essential for
the reader. We might call this register the bandwidth of a new digital triviality, referring to
Espen Aarseth’s old distinction between trivial and non-trivial reading procedures, where in
reading a book, turning the pages is a trivial procedure.14

5. Code as Programming
None of the views of code mentioned above raises it to the rank of a truly active causative sub-
ject, affecting the act of communication itself (displaying text, interaction) or the invocation

14 Cayley writes: “Although we can be made aware that the codes of digital media make the words we read on
screen flicker beneath it, we do not really care – for the purposes of interpretation – whether the text we read is
encoded as extended ASCII or Unicode.” J. Cayley, “Time Code Language,” 314.

theories | Mariusz Pisarski, Poetics in Action

12 spring/summer 2016

of sociocultural contexts (code as invoked convention or the convention of invoking). That is
only accomplished by a fifth view, presenting code as primarily programming, a set of methods
that play out in time and create a text in keeping with rules defined “at the outset” by the au-
thor, and which allow the reader to observe the results of such programming as poetic effects.
It is through these aspects of Cayley’s work, and also that of the poets of Rozdzielczość Chleba,
that computer code becomes a tool of active engagement with the text, a motor of exploration
of the boundaries of the utterance in a new medium, in other words – poetics in action.

In Piotr Puldzian Płucienniczak’s “Booms,” the role of code is relatively simple: at regular time
intervals, it displays new content in the poem’s lines, based on an alternation of words taken
from designated word groups in a set poem-sentence structure. Code also makes the title dis-
play the number of uses the generator has undergone in a given reading session.

boom #2037
grałem w minecrafta, kiedy pierwszy samobójca

wysadzał się przed meczetem w chanakin.

grałem w minecrafta, kiedy drugi samobójca

wysadzał się przed meczetem w chanakin.

budowałem portal, żeby wejść do piekła.

(i was playing minecraft, when the first suicide bomber / blew himself up in front of the
mosque in khanaqin. / i was playing minecraft, when the second suicide bomber / blew him-
self up in front of the mosque in khanaqin. / i was building a portal so i could enter hell.)

Płucienniczak’s poem plays out in time. The stage of the text, as Cayley calls it, is not complex,
and code performs its function according to a simple scenario. Nonetheless, it is code that
introduces into the poem its crucial temporal aspect, the poetic result of which cannot (effec-
tively) be reproduced in the paper version. The poem needs to be read as a series. In the form
of a single-use copy, printed in a book or sent as an e-mail attachment, “Booms” becomes an
ordinary poem criticizing the consumerism of the “digital lifestyle” in the face of global ter-
rorism. The lyrical persona appears to be an individual unable, unwilling, and powerless to
prevent the situations described in the background. The temporalization permitted by code,
however, radically changes the accent of the whole poem. After 10 minutes spent in front of
the screen, the reader observes that there is truly no end to the possible variants of the poem
being generated. What is more, each of them is counted, and that number appears in the title.
After an hour or two, the bombs in the poem are still exploding. Whereas the chips-munching,
game-loving narrator shifts to a myriad of other banal activities, the titular number begins to
reach dizzying heights. Its specific weight rises above some undefined critical mass, perhaps
different for each individual reader, and begins to tip the scale of the whole poem from nihil-
ism toward a cry of despair and empathy. The reader’s only escape, paradoxically, is to close
the browser window, so as to stop seeing this grimly rising number which translates, in the
real, extratextual world, into the number of bomb victims.

Leszek Onak’s “Sonet niezachodzący” (Never Setting Sonnet) uses temporality with similar
force and on a scale transcending its particular individual author. Written in php, the poem’s

13

script searches the headlines of Polish news sites and then arranges them into the fourteen
lines of a sonnet. When the reader clicks on “Generate New Sonnet,” the program re-sends
its query and the poem becomes updated with new content in its lines and title.15 The results
of the code work are not only visible at the local level, however. If Płucienniczak’s poem cited
above can be imagined in traditional print form, as a multi-volume printout of all possible
combinations that the generator can produce, Onak’s work could not possibly be subjected to
any such kind of obscurantist retromediation. The time that elapses on the stage of the text be-
comes even more closely fused with real time as experienced by the reader. The poem changes
with every minute that passes, depending on what information the news portals are relaying.

Fundamental to Onak’s poem is the way his program engages with other external programs,
inviting them to a kind of “live” online collaboration. The subjects participating in this active
collaboration are not actual people, however, but computers connected through the web and
the programs operating in them, whose task is to supply content to RSS information chan-
nels. Our experience of this sonnet is thus imbued with causative forces of a decidedly post-
human character. The author’s role is reduced to that of planner and curator of the event field.
Should the RSS technology fail, or the selected portals that provide the phrases and sentences
used cease to exist, the indefatigability of the sonnet’s re-production will either be suspended
indefinitely or will acquire another layer of meaning: this kind of poem and this kind of code
require constant care from the poet, who becomes like a gardener looking after his plants.

Perigram as Generative, Internet, and Post-Human Text
As Watten points out, poetics feeds off of experimental, radical texts. As a practitioner (a
publisher and producer) of electronic literature, I have not encountered a more complex and
radical work in recent years than the series of poetic programs prepared by John Cayley and
Daniel C. Howe that constitute the cycle The Readers Project (2010–2016).16 Individual instal-
ments of this long-term project contain the whole gamut of complexity that code in its proper
function brings to poetry and poetics: the programmable function of transforming a poem’s
content, style, rhetoric, and context.

The word “Readers” in the title of the project is a bit misleading. It refers not to those who
read, nor to tools for reading (conveyors of texts), but to particular algorithms that carefully
scan the source text and generate a secondary text derived from it.17 The rules that govern this
robotic reading are based on the cellular automaton The Game of Life devised by the British
mathematician John Conway,18 with the difference that in Howe and Cayley’s “game of read-
ing,” the role of cells is taken over by words, and the game plays out not in an infinite orthogo-
nal grid, but on the surface of a virtual page of a book, and thus an area conditioned by the

15 Urszula Pawlicka highlights the work’s temporal aspect thus: “we should observe that any particular generated
sonnet at the cited link immediately retreats into obsolescence, since each time the link directs us to a new
work, basing it on the latest news […].” U. Pawlicka, Polska poezja cybernetyczna (Polish Cybernetic Poetry),
Kraków 2012, 115.

16 See The Readers Project online: http://thereadersproject.org.
17 For a broader discussion of the project by both authors, see: J. Cayley, D. C Howe, “The Readers Project:

Procedural Agents and Literary Vectors,” Leonardo 2011, vol. 1, 43, 317–324.
18 See for example, P. Coveney and R. Highfield, Frontiers of Complexity: The Search for Order in a Chaotic World,

New York: Fawcett Columbine, 1996, 94-96.

theories | Mariusz Pisarski, Poetics in Action

14 spring/summer 2016

conventions of reading. 19 The space of the matrix is filled by a source text. The programmed
reader runs through the text, activates a “live” verbal cell, and leaves behind it a “dead” one.
As in The Game of Life, where an active cell has its neighbours, the active area of a verbal cell,
its typographic vicinity, potentially consists of eight surrounding words, or a smaller number
if the words at the edges (directions: N-E, S-E, N-W, S-W) do not graphically infect the ac-
tive word in the middle. The reader that Cayley and Howe use to demonstrate their system is
called a perigram. It runs from left to right, but its reading is not entirely linear, since the
program adopts as its goal not a neighbouring word from the same line, but the word in the
upper or lower right corner. It thus moves forward but can switch course on the up-down axis
and within an area extending to about 20 words. The rules of movement for the perigram are
defined as follows:

As the Perigram Reader moves through a text, it remembers each previously read word and checks

its NE and SE neighbors as potential next words. If it finds that a combination of these three words

(previous, current, and potential next, in order) constitutes a phrase with a frequency above a certain

threshold (i.e., it has been used previously in natural language to some extent) then its reading path

may diverge, effectively also generating an alternative text that is, as it were, perigrammatic [...].20

The system of the text’s reading/generation becomes increasingly interesting. In fact the peri-
gram’s code not only controls its movement over the surface of the source text (which is some-
times a text by Samuel Beckett and sometimes poetic prose by Cayley). It also sends inquiries
to internet browsers with a query whose contents consist of a potential phrase assembled “on
the wing” by the perigram. If it generates a long list of search results, the perigram chooses an
alternate phrase with a lower frequency on the lists of search results at Google, Bing and Yahoo.
Cayley and Howe, or more precisely, the Rita program designed by Howe, thus check the poetic
originality of verbal sequences to be displayed by the perigram. This test of originality takes
place within the largest possible global storehouse, represented by the contents of the Internet
and the inquiries of browser users inscribed in the search window.21 The “commons,” as Cayley
calls it, is a gigantic, dynamic dictionary, increasing its resources minute by minute and hour by
hour. As a result, the perigram can change its flow of reading/writing from day to day, as docu-
mented by the authors during exhibitions at which perigrams were able to generate different
text even when the phrase initiating their work (written by visitors to the exhibition, upon re-
quest) was the same and the source text remained unchanged. This happened, not because the
English-language internet’s millions of users suddenly began using rare, poetic combinations
of words, but because of the Google algorithm’s auto-correct function, which in the course of

19 Cayley and Howe remind us of the arbitrary nature of such a choice, and its connection with prevailing
convention in Europe and the US.

20 J. Cayley and D. C. Howe, “The Readers Project: Procedural Agents and Literary Vectors,” 319–320.
21 The use of the word prompts of the type that Google and other search engines present to users “on the fly”

while they are typing in search forms the basis of another side-project of The Readers Project: the conceptual
book How It Is In Common Tongues, which involves the rewriting of the content of Beckett’s novel How It Is by
means of (manually) filtering it through the reserves available to internet search engines. Cayley and Howe
would write in 3-4 successive words from Beckett into the browser and choose the results with the longest
series of words not found in a quotation from Beckett’s text on the internet but from original utterances found
on websites. Next, each phrase found this way in the commons was placed in the new book with a footnote
giving the source of the cited passage. See J. Cayley and D.C Howe, How It Is in Common Tongues (The Readers
Project: Common Tongues), Providence 2012.

15

a repeat run through the same text encountered its own phrase as a search result (a phrase
Cayley had planted in the internet, and which had already been indexed by search robots!).

Illustration no. 2. Perigram reader in action

The question then arises, who is the author of the poem that takes shape before our eyes?
Is it the poet, the programmer, the author of the source text, the internet search engine,
or the million active internet users? Each of these players has a part in producing the work.
What status in the field of communication do we assign to the digital reader? The ontology
of this reading robot is already subject to multiplication, since in reading the text, the pro-
gram simultaneously creates it. We should observe at the same time a significant gap between
the “active reader,” the beloved figure of 1990s critics enthusiastic about new media, from
the “active digital reader.” The Readers Project asks another important question – about the
condition of the modernist episteme in the digital context. Linguistic innovation and poetic
rebellion in the form of writing that is, in short, taken from Google but against Google, the
search for originality in the global store of English language material, is more a continuation
than a negation of modernism. The texts do not even feature postmodern riffs on hackneyed
chords in the style of Talan Memmot’s “Lexia to Perplexia.” Something is not quite right here.

theories | Mariusz Pisarski, Poetics in Action

16 spring/summer 2016

Michael Joyce, the pioneer in literary hypertext, defines himself as an “ultramodernist.” Jes-
sica Pressman even speaks of a broader tendency, a whole current of “digital modernism,”
born on the wave of the technological electrification of the text.22 Cayley and Howe are add-
ing their own chapter to that movement, simultaneously situating themselves in the avant-
garde of contemporary scholarly methodology in the humanities. In The Readers Project and
in the perigram reader itself we find elements of operations relating to big data, elements of
data-mining and crowdsourcing – digital tools of the humanities. At the same time, however,
Johna Cayley reminds us that his work on this project is nothing other than “the visualization
of poetics” and “visual poetics.”

The Surface and Depths of the Digital Work
In galleries and conference presentations by Cayley, the perigram reader and its reading/writ-
ing are presented as a form of palimpsest, where the visually harmonized matrix of the source
text is the field of events activated by the perigram. In some presentations, the work takes on
the form of an attractive, dynamic acrostic. Behind the aesthetically impressive, mobile map
of letters, words, and phrases chosen by the computer in astonishing but evidently moni-
tored sequences of words23 is hidden a highly organized cybertext. Poetics expanded to the
extent of merely including visual, film, or sound elements, or even causative activity from
the reader, would not encompass it. Unless deepened to include a hermeneutics of code, here
only mentioned, poetics would at best be capable of analysing works not fundamentally dif-
ferent from– for example– richly illustrated children’s books with interactive features (such
as lift-the-flap books) or sound (buttons, keys, the ability to produce or record sound). The
programmable aspect, essential to Cayley and Howe’s work, would, observed through the lens
of a poetics not geared toward code, be little more than an invisible substratum of the reme-
diation of the various orders with which the perigram at the surface level of its text engages
in dialogue (animation, visuality, books), where certain features of these orders are amplified,
multiplied or expanded.

The programmatology represented by Cayley and manifested in the Polish context by
Rozdzielczość Chleba, a direction in poetic reflection exploring the active participation of
code written by the author in the production of a work’s meanings, represents a poetics of
new media in a more consistent and representative form than many works hailed as ground-
breaking.24

Perigram, Hypertext and the Future of Digital Poetics
Compared with the challenges posed to traditional poetics by Cayley and Howe’s program-
mable reader and its interface with the commons, hypertext – at the center of critics’ and
authors’ attention in the 1990s, when the digital revolution conquered educational centers

22 J. Pressman, Digital Modernism, Oxford 2014.
23 Since a perigram moves through a surface of about 20 words from the active word at a given moment, a clear

semantic relation is preserved with the words that constitute the resulting phrases in the derivative text.
24 Talan Memmott’s “Lexia to Perplexia,” discussed by Barret Watten in the book New Media Poetics, is a parody

of hypertext and cyberculture discourse, typical for the period in which it was written (2002), when authors
of second-generation digital literature took a critical stance toward the authors of the first generation. Its
status as a breakthrough work is accorded mainly for historical reasons. For new media poetics, however, John
Cayley’s work has had much greater significance.

17

in the rich countries of the West, appears a fairly conventional form of writing, maintaining
as it does strong links to the book paradigm.25 From today’s perspective, we must say that as
a form of text that branches out and functions on command, hypertext constituted not so
much a break with as a remediation of print. The stories of Michael Joyce (afternoon, a story;
Twilight, a symphony), which came closest to fulfilling the demand, voiced in manifestoes, for
the creation of a work that would change each time we read it – not in the sense of the text’s
interpretation, but in the sense of the very substance, quantity, and sequence of the narrative
material’s appearance on the screen in successive reading sessions – compared to the genera-
tive and web-based poetics of the perigram, looks amazingly static. Even when enhanced with
a system of conditional links, that stasis, engaging as it is for the reader, is still deprived of
significant programming, which puts hypertext in the same group as the earlier-mentioned
hybrid, interactive children’s books, since its text remains fixed and final in its definition and
is not in a position to expand or contract. The strategies of critical reflection hitherto applied
to digital works, formulated in the Polish context in frequent attempts to outline the poetics
of new media, are somewhat inadequate and must be expanded and deepened.

The deepening process must also concern the code and web aspects of the text. For if we agree
that the electronic text is formed from several equally important and interconnected layers
(material, code, text, and operation), then perigrams, redefine the scope of the layer of code,
differentiate various segments of the material domain (hardware, platforms, distribution sys-
tems) and revolutionize the very concept of text, because textual and programmatological
phenomena that are taking place on its surface originate neither from the author, nor the
reader, nor from the text itself.

25 This is the condition diagnosed by the authors of recent studies on the subject. See Alice Bell, The Possible Worlds
of Hypertext Fiction, London 2010; J. Baetens, F. Truyen, “Hypertext revisited,” Leonardo 2013, vol. 46, no. 5.

theories | Mariusz Pisarski, Poetics in Action

Keywords | Abstract | Note on the Author ...

18 spring/summer 2016

The purpose of the article is to broaden readers’ understanding of how code is used in digital
literary forms. Although digital poetics in the Polish context seems relatively established,
the code aspect of works, particularly when we consider works in which a computer program
becomes an active, causative subject beyond the full control of author and reader, requires
some additional clarification. Using examples from Polish electronic literature, the article re-
capitulates the typology of code formulated by John Cayley, a pioneer in digital poetry; next,
it examines a series of works by Cayley and Howe in which programmed “readers” – supplied
with a source text and linguistic resources indexed by Google – are sent on a special mission
in search of poetic originality. Three main theses are formulated: programming is a new kind
of poetics in action; code in temporal or internet texts attains the status of an autonomo-
us actor, situated in between text, author, and reader, and maintaining contact with other
programs on the web; hypertext as a primary paradigm of digital textuality turns out to be
a transitional form, from the point of view of the practices of Cayley and Polish cybernetic
poets, much closer to the print paradigm, that was originally acknowledged.

code poetry

Keywords

Abstract:

Hypertext
generative poetics

19

Mariusz Pisarski is a scholar and publisher of elec-
tronic literature. He is the author of the book Xa-
nadu. Hipertekstowe przemiany prozy (Xanadu, Hy-
pertext Transformations of Prose, Kraków 2013),
editor of the magazine Techsty and the multimedia
department of the publisher Ha!art. A translator
of digital poetry and prose, he has written hyper-
text adaptations of literary classics (Rękopisu zna-
lezionego w Saragossie [The Saragossa Manuscript],
2012; an internet adaptation of Bruno Schulz’s
short stories entitled Bałwochwał [Idolater], 2013).
In 2011, he was nominated for the Ted Nelson
Award by the American IT association ACM (Hy-
pertext 2011). His doctoral thesis on hypertext
(defended at UAM, under Prof. Bogusław Bakuła)
received First Place in a National Cultural Center
contest. He is a member of the Electronic Litera-
ture Organization and the recipient of the SAIA
stipend from the Institute of World Literature of
the Slovak Academy of Sciences. He is an associate
of the Laboratory of Intersemiotic and Intermedia
Research at the Institution of Polish Studies at the
University of Warsaw. |

Note on the Author:

theories | Mariusz Pisarski, Poetics in Action

d i g i t a l s e m i o t i c s

poetic generators

e-literature

	_GoBack
	_GoBack

